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Correction to Phase Boundary neal ν = 1 in 

Forced van der Pol Oscillator 
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Summary: 1'he phase diagram of forced van der Pol oscillator near v= 1 can not be 旧

plained by the traditional theory which assumes stationary solution such as quasi-peri 
odic or fu ndame川a l oscillation. They are interpl'etted by the model that seJf-sustained 

oscillation i8 modulated by the external force. The applicabil羡y ra日ge of the theory is 

also d iscussed 
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1. Introduction f ixedνsuch as y=2.5 

Forced oscillat�ons in nonlinear oscillator 

systems have been well investigated as fairly 

suitable theme of nonlinear osciIlation t.he 
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ory リ 1 n theoretical analyses appropriate 

stationary solut綷ns are assumed such as funｭ

damental (FO herea fte r) , quasi-periodie CQP 

hereafter) , harmonic (HO hereafter) or self 

sustained oscillations (SO hereafter ) , and 

their s ta bi l山田 are analyzed. By these 

method lhe phase diagram of various oscil 

lation modes is obtained. The example for 

forced van der Pol oscillator is represented 

in Fig.l which is a well known diagram and 

is cited in usual textbooksZ 1. Here the an 

gular frequency of 80 is taken to be 1. The 

vertical and horizontal ax回目戸田ent the 

amplitude E and the angular frequency ν of 

external fOI 白 In the reglOn written by 

“ FOぺ“QP" and “1-10" F O , QP and HO ap 

pear , respectively. 'f'he phase diagram shows 

that there is a crit.ica1 value of E , Ec and 

for E> E, FO and for E> 8 , QP appear with 

fig.1. Phase diagram of forced ...an der Pol 
osci Ilator 

The reg ions “ I/2HO " and "2HO" do not ap 
pear for eq. (1) since the asymmetry in oon-

linearily is om itted 
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Recently the deLailed numerical analyses 

have been undertaken by the author for forced 

van der Pol osci1lator3). His result s ho、.vs

that the region of E< Ec where QP is exｭ

pected to be pr回ent theoretically IS not 

uniform and var綷us oscillat�g slates are 

p' 田ent . 8�ultaneously transition phenomena 

near Ec ha ve been repO I 回d ¥vhich have not 

been p陀d icted theoretically. As a sequel 

of this work we investigate the osc ill a t旧n

behaviours nearν ;;;;:; 1 of the forced ¥'an der 

Pol oscillator by numerical method. We find 

that the numerical resu lt 回n not be explained 

by the traditional theory which aSSllmes the 

p' 田ence of stationary solution 5uch as FO 

or QP. This 諸国used by the f act tha t the 

assumption does noも hold nearν~ 1 ， and we 

succeed in deriving the model interpreting 

the result 

!n the next section the method and the 

results of numerical analyses are mentioned 

In section 3 the new idea which can explain 

the reslllts is introduced. Section 4 is deｭ

voted Lo the concluding remarks and the ap 

pl icability lirn it of the theory will be dis一

山田ed

2. Method and Results of Numerical ﾄnｭ

alyses 

The basic equation studied in this articJe 

is the [ollowing fo r田d van der Pol oscillaｭ

tor equaLlOn; 

x 一 μ(l - x 2 )x + �)o2X= Ecosν む 111 

μand ω ， a四 gain and angular frequency of 

SO and we take μ= 1 and ω 。 = 1 without loss 

of generality. E and νare amplitude and anｭ

gular frequency of the external force. The 

equation is analyzed by second order Rungeｭ

Kutta method. 1'0 grasp the characteristi白
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Fig.2. Phase space orbit for E=O.13 8nd ν= 
0.98 

of the oscillations the orbit in phase space 

i8 uti1ized. The example is given in Fig.2 

This is sma]! E 団関 where QP is expected 

to be present theorctica lIy , however the cir 

cumference of the orbit resembles to that of 

free van der Pol oscillaLor (E=O). Accord 

ingly we regard t.hat 80 is moduluted by Lhe 

external force in this region of E. V';c t.ake 

as a m岨su re of modulaいon the quantity W 

defined in Fig.2. When "= 1.5. W changes 

with E as shown in Fig.33). Thcre are three 

critical values of E , E\ , E2 and E3. F'or E> 

日 3 F'O appears , that is , E 3 ∞rres ponds to Ec 

mentioned before. For E<E3 QP is ex pect吋

to be pr田ent ， however Lhis region is sepa 

rated into three regions by E¥ and E2. In the 

region of E< El we can regard that 80 is 

weakly modulated by the extcrnal force For 

E ， く E< E 3, 80 and the external force. are 

comparable order. F'or E¥<E<E2 80 prevails 

the external force s Jighily , and for E 2く E<

E 3 uice versα This is the resul t of ref. (3) 

When νapproc hes 1 ( 1 ν 1 1 :SO. 1 ) lhe region 

between E1 and E3 becomes narrow and E¥. E2 

and E3 s田m to I児 degenerate . Thus we set E) 

""E ，芸品 = Ec. In this case W shows variaｭ

tion with E as represented in Fig.4. For E 
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Fig.3. W vs. E for v=1.5 
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Fig.4. E-dependence of W for ν~ O.98 

>E, FO appe町s . and for E< E, QP comes 

0 . 3ト
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Fig.5. Numerically obtained phase boundary 
near 1.1圭1

oul. Theν -dependence 01' c゚ �s plottcd in 

Pig.5. The dotted line in Fig.5 is a theo 

reiical curve of Ec which will be cUscussed 

In S凹tion 3. This ﾌs a part of ihe phase d卜

agram nearν :::::= 1 ， however this diagram 阻n

not be explained by the traditional theory 

which assurnes stationary solutions as will 出

discussed in the nex L section 

3. Theoretical D肝ivation of Phase Bound 

ary near ν=1 

In the iraditional theory the phase boundｭ

ary 01' Ec separating the regions of FO and 

QP is derived by assuming the stationary 50-

lution o[ FO or QP in eq. (1) 

At first we assume FO to eq. (1) , that is. 

x( t) = acosνt + bsinνt (2) 

Subst > t uting eq. (2) into eq. (1) and equating 

the terms of cosvt and sin川， we obtain the 
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following relation; 

((1 -r' /4)' + {(1-y' )/.μνl' lr' 

~ (E/μ)' 131 

Here r2 = a2 + b2. By the stability analysis 

of th� solut�n the cond山on r 注 、/す IS

found. Ec � determined from 町1 131 by lotｭ

ting r~v 2. wh>ch gives 

E, ~ 12 (1 ν 2 )2 +μ2ν'/21 ' " 141 

On the other hand if we assume QP solut�n 

to eq. 111 

x(t) ~ acosνt + bs i nνL +r"cos1l ot (51 

The first and second Lerms represent Lhe com~ 

ponenL of the external force and the third 

that of SO. Substituting eq. (5) into eq. (11 

and equating the terms of cosνt ， smνt ， COS1Iot 

and si nν ot we obtain the following relation; 

ν 。 = 1 and r s2 +2 r 2= 4 , 

((2-3R'/4 )'+ ((J ー〆 )/μν) ' 1 

x(4-R') ~ (E/μν)2 161 

Here r2 = a2 + b2 and R2 = r2 + rs2. Jn th�s 

case Ec is decided when we set rs = 0 and r 

= V 2 in eq. (61. since FO appears for rs =0 

Of course Ec obtained from eq. (6) coincides 

with eq. (41. Ec becomes minimum for d Ec/む

=0. Frorn eq. (4) 1I""n which gives lowesL 

value of Ec 1s determined as , 

νmln= ( 1 -μ2/8) 1I 2 ， 171 

which is a reasonable result since eq. (7) 

g�es for μ<:1 ， νm ， n;:;;:;;1 - f.i/1 6. As is well 

known this is a corrected value of Lhe angu 

lar frequency of 80 to f�rsL approxirnation 

obtained by perturbation method. The va1ue 

of Ec. Ecm'n for ν =νmi n is then obtained 

as , 

E， m川 ~ (J 7μ， /32 〆 /1 6) '" 181 

F'OI μ~ 1 νm， n~0 . 9l1 and Ec m l!，~0 . 68 ， ho wev~ 

er numerical result shows Ec===O for ν ~ O . 94 

(Fig.5) , which indicates Lhe above discus 

sions noL to be correct 

We cons�der this discrepancy to originate 

from the assumption of the staLionary oscilｭ

laLion such as FO or QP. lnstead of them 

we use as the solution Lo eq. (1) 80 modu 

la led b)' the oxもernal force for small E, The 

form of the orbit in Fig.2 suggests this 

idea. Thus we assume the solut.綷n o[ eq. (1) 

as [ollows; 

x ( tl ~ (A+a(t))cosl 191 

H.ere A is the ampliLude of 80 and we con~ 

sider that the exLernal force causes modula 

tion a(t) in the amplitude. The relaLion A 

""2}>a(t) holds. Substiluting eq. (91 inlo 

eq. 111 )'ields 

臘ost -(2s�t + (A + a)2 cos2 t,} 

X (A + a ) si ntã+(A • a) 3cos2tsint 

~ Ecostcosl (ν ←I) l) 

Esintsin{ν ー 1 )L) . U印

8ince a(t) is considered Lo be slowly vary 

ing. �(t)""O. Using the relation A""2}>a(t) 

and equat�ng the terms of cost and sint the 

following relation is obtained; 

".(1)""(日/2)cos{ (ν ← 1 )t) . U11 

W is estimated nearly equal to be 2ý"f8マ0>
where the averago ( ) ﾎs taken over a period 

1'hus eq. (l� gi ves , 

W""E/l v'言(ν ー 1 ) ) 日割

Ec may be determined frorn the condition that 

the relation A}>a(l) do田 not hold , that is , 

W""A. Thus E, is docided from eq. (l~ as , 
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Ec~ も! 2 Cν l) A""2v 2 Cν 一]) 1131 

The Iowesest order correction to the angular 

frequency changes eq. n羽田，

E,"" 2 〆 2 Cν l 十 μ2/16 )

"" 2v2CνO . \M) for μ~ j 日品

Eq. Il~ for μ ~ j is plotted in Fig.5 by dotｭ

ted line. Although the quantitative agreeｭ

ment � incomplete ,> t explains the data qual 

itatively rather lhan the traditiooal theory 

does 

4_ Concluding Remarks 

It i5 found that the traditional theory can 

not expIain the numer祥al resuJts of the phase 

boundary of the forced van der PoI oscilIaｭ

tor n国rν ""1. This fact 山1Îcates the 1'a社

ure of the a田口 mption for small E that the 

stationary 501ut�n5 5uch as QP and FO are 

present. In5tead of 羡 the model thaも SO is 

wcakly modulated by the external force i5 

proposed in small E region , which can ex 

plain the numer祥al results although i も IS

m∞ mplete quantitatively. One of the rea 

son5 for thi5 incompJeten田s rnay ari5e from 

the condition W~ A ut精ized when Ec is de 

termined. As i5 clear from Figs.2 and 4 thi5 

condition �5 not neces5ariIy fulf精led 

The numerical data 回n be well explained by 

the traditional theory for the region I ν1 1 

ミil . 2 ， on the other hand they can oot be done 

for the region Iν ー 1 1 :S0.1. Why is it? One 

of the plausibJe reasons is as follows: if A 

:2: Ec the a田umption of stationary solution 

may be available n回r E,. Whi1e for A:?E, 
80 may be dominant even if the external 

force acts on the oscillator. Accordingly the 

condition that the traditional theory holds 

can be ∞nsidered to 出国，

E,'" 2 v 2 1ν1 1 ;と 1 , 11司

wh祥h g�es 1 11 - 1 1 ミ0.3. While the proposed 

model in thi5 article is appropriate for the 

region Iν ー 1 1 ，豆0 . 3. This is a reasonable 同

su[t which gives the criterion whether the 

trasitional theory or present model is appro 

pflate 
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外力 lζ駆動された ファン ・ デァ ・ ポー ノレ振動子の

ν= 1 近傍の相図への補正

1~li台紙灸大学 自然科学教室

森本安夫

要旨 ν 近傍での強制 van der Po l 振動子白相図は I 定常的な擁周期振動や基本調政侭i!iJJを仮

定する従来の理論では うまく説明出来ない 然し自然掘動が外力ιより弱く~調されるというモデル

によって解釈される ζ とが解った そのモデルの適m範[国民ついても議論する己とができた


